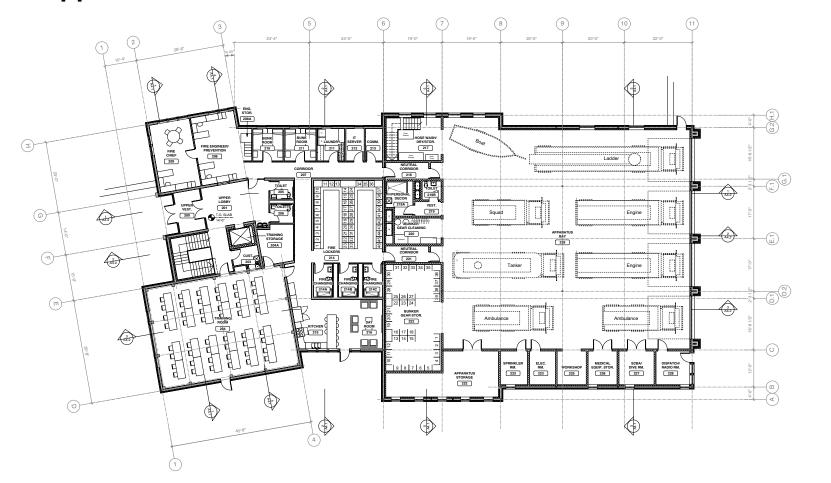
JOHNSON ROBERTS ASSOCIATES INC.

Essex, Massachusetts

Design Presentation May 22, 2019

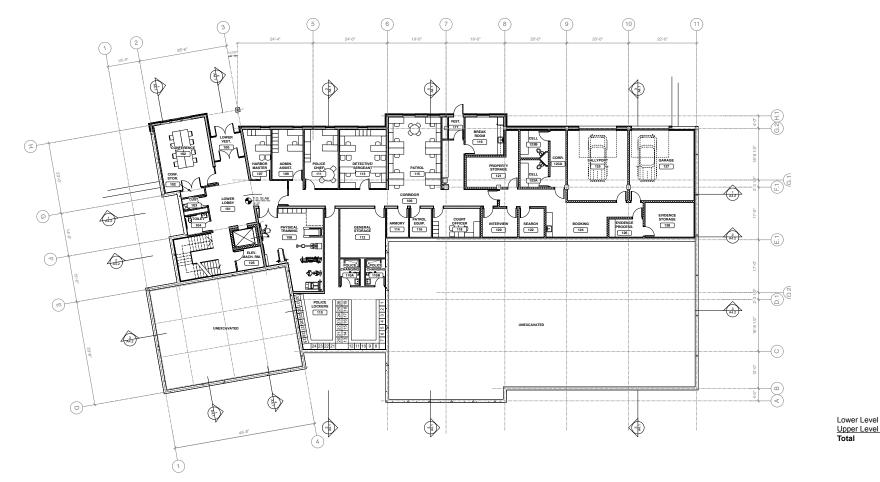

WETLANDS VETLAND SETBAC 33 34 35 36 37 00000 **** C ************ Ò Ð 0 \bigcirc 1 C $\overline{\bigcirc}$ 000000 20 Ø 12.11 \bigcirc ***** Ò S.L. Lower Level JOHN WISE AVE Upper Level Total

8,050 SF

14,800 SF 23,850 SF

Essex Public Safety Building Project

ARCHITECTS Upper Level Plan


 Lower Level
 8,050 SF

 Upper Level
 14,800 SF

 Total
 23,850 SF

Essex Public Safety Building Project

ARCHITECTS Lower Level Plan

8,050 SF

14,800 SF 23.850 SF

Essex Public Safety Building Project

ARCHITECTS View of Main Entrance

HVAC System Options

Essex Public Safety Essex, MA

Overview

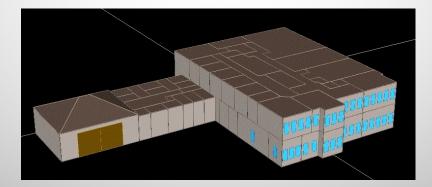
1.Goal of Economic Analysis

2.HVAC System Option Overview

- Option 1 : VAV System w/ High-Efficiency Boilers
- Option 2 : CHW Induction Unit System with DOAS
- Option 3 : VRF System with DOAS

3.Economic Analysis Methodology

1.Questions and Discussion



Goal of LifeCycle Economic Analysis

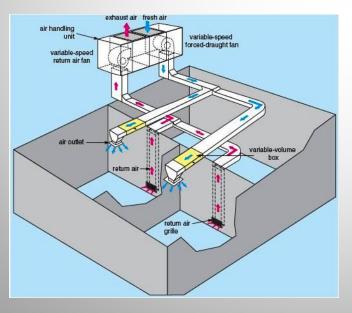
The goal of the mechanical lifecycle engineering economic analysis is to assess the performance of various mechanical systems in comparison to a baseline mechanical system.

Each option is compared to the baseline system to determine the lowest combined savings over a 30 year cycle to determine the most advantageous system considering electrical costs, gas costs, maintenance costs, and initial construction costs.

By comparison of each option to the baseline system, the option with the greatest total life-cycle savings is generally recommended. To further enhance controllability and overall system performance, additional options should be considered that will enhance year round temperature control and comfort at a possible marginal increase in capital cost.

Baseline & Option 1 - VAV System

Pros:


•Lower piping installed costs due to two-pipe system as chilled water piping is not required

•Moderate to high overall installed costs

•Chiller plant and distribution systems not required

•Low maintenance; no condensate drains, fans, or filters at terminal units

•Reduced automatic temperature controls installed costs resulting from reduced control components

Cons:

•Moderate noise levels

•Reduced temperature control if several rooms are served by the same VAV unit

•Reduced indoor air quality as a result of being a mixed-air system

•Maintenance of equipment is in occupied area

•Higher energy consumption due to increased fan energy

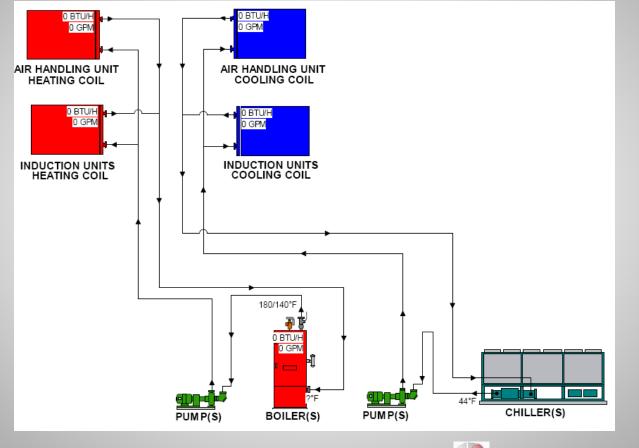
•Higher energy consumption as summertime use of hot water system is required for hot water reheats of VAV boxes

•Overall ductwork costs are greater due to the larger supply and return ductwork systems providing mixed-air rather than ventilation only

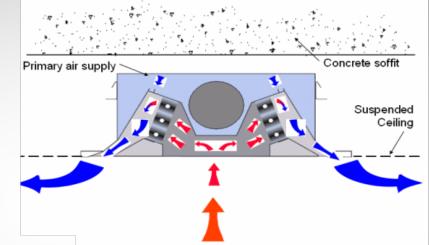
Option 2 – Chilled Beam Induction Unit System w/ DOAS

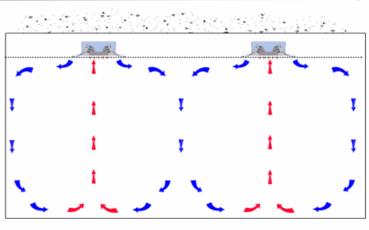
Pros:

•High energy efficiency •Low noise levels •Flexibility of installation •Moderate first cost •Very low maintenance, no fans or filters at units •Moderate overall installed costs •Excellent humidity control •Higher amounts of outside air required to meet capacity of units in smaller zone areas; resulting in improved indoor air quality •No electrical requirements for terminal units •No floor space required for equipment •Each unit can provide individual control •Reduced automatic temperature controls installed costs resulting from reduced control components


•Requires increased coordination with "ceiling" system. (e.g. additional piping, HW, CHW & condensate piping) •Requires additional ventilation air in some cases

•Condensate drain maintenance for terminal units


Option 2 – Chilled Beam Induction Unit System (Piping Diagram)



GARCIA • GALUSKA • DESOUSA Consulting Engineers Inc.

Option 2 – How Chilled Beam/Induction Units Work

- Primary Air supplied to plenum and discharges through nozzles
- Room air is induced through the heating/cooling coils
- Mixture of Primary and Room air is delivered to room through diffuser slots.

Option 3 – Variable Flow Refrigerant (VRF) System w/ DOAS

Pros:

•Lower piping installed costs due to refrigerant piping system only •Moderate overall installed costs

- •Chiller plant and distribution systems not required •Reduced boiler plant size
- •Single cabinet can be utilized for both heating and cooling applications

•Smaller central ventilation ductwork as only the code required ventilation air is provided to meet occupancy load

Cons:

•Individual fan motors in space

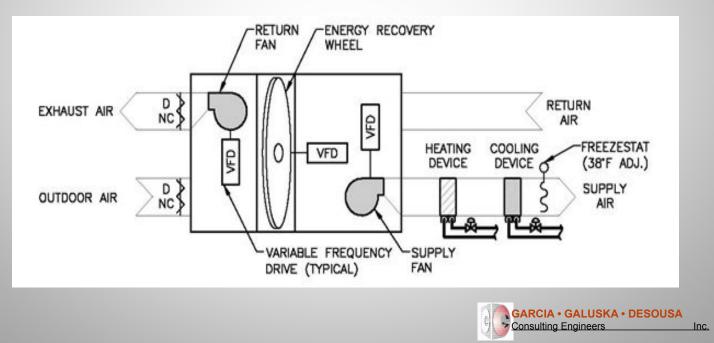
•Higher noise levels

•Quarterly filter changes per unit

•More complex automatic temperature controls

•Higher automatic temperature controls installed costs on a per unit basis due to amount of control devices required

•Condensate drain maintenance for terminal units


•Maintenance of equipment is in occupied area

•Higher energy consumption due to increased electric heating

Dedicated Outside Air Handling System

- Typical to System Options 2 & 3
- Increases Energy Efficiency due to:
 - Energy Recovery
 - Sizing Equipment for Specific Duty (AHU for Latent Cooling and Terminal Units for Sensible Cooling)

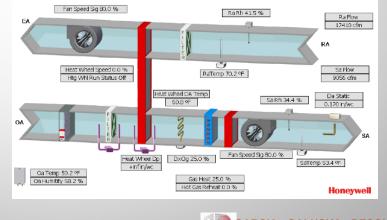
HVAC Plant and Supplemental Systems and Equipment

Boiler Plant (All Options)

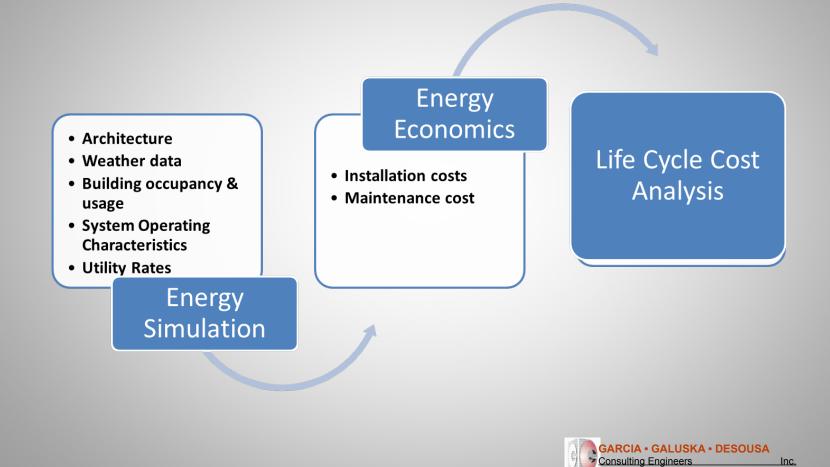
- High efficiency (90%+) gas-fired condensing boilers
- Boiler temperature reset controls
- Variable speed pumps with VFD's

Chiller Plant (Option 1&2 Only)

- High efficiency air-cooled chiller
- Chilled water temperature reset controls
- Variable speed pumps with VFD's



Building Automation and Energy Management System


- System (Zone) Scheduling
- Occupied-Unoccupied Control
- Night Setback Operation
- Lighting Control System Integration
- Increased Energy Savings
- Integrate with Preventative Maintenance Scheduling

Energy Economics Methodology

Energy Model Analysis Methodology

- Computer Simulation of Building Energy Usage using Department of Energy (DOE-2)/eQuest.
- Model consists of project specific:
 - Architectural features (geometry, orientation, envelope)
 - Lighting Power Density
 - Local Weather Data
 - Occupancy, Lighting, Equipment Schedules
 - HVAC System Data (specific to each system option)
 - Regional or Actual Owner Utility Rates
- Computer calculation of HVAC System economics utilizing NIST BLCC 5.
- Calculation factors:
 - HVAC System and Maintenance Cost Estimates
 - Prepared in house using recent project cost data and industry standard estimating references.
 - Standard Industry Discount, Inflation, and Interest Rates

Essex Public Safety - Mechanical System Payback Summary

Baseline	System	Gross Capital Investment*	Annual Elec. Cons. (kWh)	Annual Gas Cons. (MBTU)	Annual Electric Cost	Annual Gas Cost	Combined Utility Cost	Annual Utility \$/s.f.	Annual kBTU/s.f. (EUI)	Annual Maint. Cost	Combined Annual Expense	Combined Expense Savings**	Total Life-Cycle Savings***	Discounted Payback (Years)****
-	1. Hot/chilled water coil VAV AHU systems with energy recovery wheel serving terminal VAV boxes with hot water reheat coils 2. Standard efficiency gas-fired boiler plant 3. Standard efficiency air-cooled chiller		313,030	4,201.4	\$50,084	\$50,417	\$100,501	\$3.24	169.98	\$11,550	\$112,051	-	-	-

Option	System	Gross Capital Investment*	Annual Elec. Cons. (kWh)	Annual Gas Cons. (MBTU)	Annual Electric Cost	Annual Gas Cost	Combined Utility Cost	Annual Utility \$/s.f.	Annual kBTU/s.f. (EUI)	Annual Maint. Cost	Combined Annual Expense	Combined Expense Savings**	Total Life-Cycle Savings***	Discounted Payback (Years)****
1	1. Hot/chilled water coil VAV AHU systems with energy recovery wheel serving terminal VAV boxes with hot water reheat coils 2. High efficiency gas-fired boiler plant 3. High efficiency air-cooled chiller	\$1,195,476	307,620	3,440.3	\$49,219	\$41,283	\$90,502	\$2.92	144.84	\$11,550	\$102,052	\$ 9,999	\$183,600	5
2	1. Four-pipe chilled/hot water coil induction units 2. Hot/chilled water coil 100% O.A. ventilating units with energy recovery wheel 3. High efficiency gas-fired condensing boiler plant 4. High efficiency air-cooled chiller	\$1,534,969	248,050	3,171.6	\$39,688	\$38,059	\$77,747	\$2.51	129.61	\$10,500	\$88,247	\$23,804	\$153,384	20
3	1. Variable refrigerant flow (VRF) terminal evaporator units with air-cooled condensing units 2. Hot/chilled water coil 100% O.A. ventilating units with energy recovery wheels 3. High efficiency gas-fired condensing boiler plant	\$1,340,274	288,820	2,640.7	\$46,211	\$31,688	\$77,899	\$2.51	116.97	\$14,400	\$92,299	\$19,752	\$272,408	11

Conclusions and Recommendations

Our observations of the Mechanical System Payback Summary suggests that option three, a VRF unit system, represents the most cost effective solution by yielding an approximate \$141,121 savings over the 30 year study period with an instant payback in comparison to the baseline system.

Thank You

Questions and Discussions

Essex Public Safety Building Project ARCHITECTS
Value Engineering Changes

- Reduced building area by ~2,200 square feet from SD
- Narrowed Apparatus Bay by 4' overall
- Eliminated of (1) Bunk Room & (1) Personal Decon Room
- Combined Sergeant & Detective Offices into shared office
- Relocated Mechanical Room to Mezzanine (less basement excavation)
- Reduced size of public areas, including eliminated (1) Toilet Room
- Reduced brick at exterior (brick remains at driving areas for durability)
- Eliminated Basement Storage under Training Room

Essex Public Safety Building Project Rowley Comparison

- **Escalation:** construction midpoint ~2 years later than Rowley
- Site: tight, sloped site w/ wetlands (flat site w/ limited cut/fill at Rowley)
- **Structure:** multi-story steel/concrete structure (single-story wood framing at Rowley)
- **Zoning:** physical and mechanical separation of red, green and neutral zones (no separation at Rowley)
- **Finishes:** robust CMU in booking, brick at drivable areas, etc. (GWB, composite siding, etc. at Rowley)
- **Program:** Spaces not included at Rowley (Police Garage, Patrol Room, separated support spaces at Apparatus Bay, etc.)

Essex Public Safety Facility Schedule Overview

	Start	Finish		2018 2019																																			
				Sep		Oct		No			ec		Jan		Feb		March			oril		Мау		June			luly		Aug		Sep		Oct		No			Dec	_
I			27 3 1	10 17 2	24 1	8 15 2	22 29	5 12	19 26	3 10	17 24 3	1 7	14 21 2	28 4	11 18 2	25 4	11 18	25 1	1 8 1	5 22	29 6	13 20	27 3	10 17	24	18	15 22	29	5 12 19	26	2 9 16	23 7	7 14 21	28	4 11 1	8 25	2 9	16 23	30
Architect Selection/Options Analysis	27-Aug-18	11-Feb-19																				ļ																	
Special Town Meeting - OPM	27-A	.ug-18	•																			Ì																	
Fall Town Meeting - Architect	16-C	Oct-18				0																																	
Public Forum	13-D	ec-18								0																													
Public Forum	6-Fe	eb-19												•																		I							
Special Town Meeting - Land Acquisition	11-F	eb-19																																					
Schematic Design	12-Feb-19	8-Apr-19																				ļ										I							П
Public Forum	10-A	.pr-19																	0			ļ																	П
Design Development	9-Apr-19	1-Jul-19																				ļ										I							Л
Public Forum	1-Ma	ay-19																			•																		П
Town Meeting - Project Funding Approval	6-Ma	ay-19																			•																		
Construction Documents	2-Jul-19	22-Sep-19																																					Д
Bidding	23-Sep-19	4-Nov-19																																					
Construction	5-Nov-19	31-Jan-21																																					

Essex Public Safety Facility Schedule Overview

	Start	Finish		2020 2021																																		
				lan		Fe			Marc			Apri	1		May	'		une		J	uly		Αι	ıg	S	Sep		00			Nov			Dec			Jan	
		1	7 14	21	28 4	11 1	18 25	4	11 1	8 25	1	8 15 2	22 29	6 1	3 20	27	3 10	17 2	24 1	8 1	15 22	29	5 12	19 26	2 9	16 2	23 7	14 2	21 28	4 1	1 18	25	29	16 23	3 30	4	11 18 25	5
Architect Selection/Options Analysis	27-Aug-18	11-Feb-19																																				
Special Town Meeting - OPM	27-A	ug-18																												Π	Т							
Fall Town Meeting - Architect	16-C	oct-18																																				
Public Forum	13-D	ec-18																																				
Public Forum	6-Fe	eb-19																													Т							
Special Town Meeting - Land Acquisition	11-F	eb-19																																				
Schematic Design	12-Feb-19	8-Apr-19																																				
Public Forum	10-A	pr-19																												Π	Π			ιT	Π			
Design Development	9-Apr-19	1-Jul-19																												Π	Π			ιT	Π			
Public Forum	1-Ma	ay-19																												Π	Π			ιT	Π			
Town Meeting - Project Funding Approval	6-Ma	ay-19																																				
Construction Documents	2-Jul-19	22-Sep-19																													Т				\square			
Bidding	23-Sep-19	4-Nov-19																													Т				\square			
Construction	5-Nov-19	31-Jan-21																																				-

Timing of Future Town Meeting Borrowing Vote

Essex Public Safety Facility

Potential Options Comparison

Full Funding Approval Based on 60% CDs	Full Funding Approval Based on Actual Bids
 Schedule: Mid-September, prior to issuing Invitation to Bid 	 Schedule: Late October, after bids received and prior to issuing notice of award
 Pros: Bidders assured funds are in place to award contract Less risk of delaying award 	 Pros: No risk of bids coming in over budget Voters may prefer approving budget based on actual bid numbers
 Cons: Must carry contingency and/or Add Alts to mitigate risk of bids exceeding budget Voters may prefer to know that budget is based on hard bid numbers 	 Cons: Depending on what other project are out for bid, participation from bidders may be diminished More constrained window for Town Meeting

Project Delivery Methods

Essex Public Safety Facility

Overview of D-B-B and CM at-Risk

Design - Bid – Build (M.G.L. Ch. 149)	Construction Manager at Risk (M.G.L. Ch. 149A)
 "Traditional approach" for public construction projects in Massachusetts 	 CM at Risk selected in the design stage CM at Risk selected on qualifications and fee
 Design and construction stages proceed sequentially 	
 Owner completes design, issues bids on competed design 	 Owner first executes preconstruction contract with CM for constructability reviews, construction scheduling, and project cost estimates during the design process
 Lowest "Eligible and Responsive" General Contractor is awarded the contract 	 Owner negotiates Guaranteed Maximum Price for the project – contract becomes a cost plus fixed fee contract for
 Owner executes lump sum contract with General Contractor 	construction phase
 Best suited for less complicated projects that are budget sensitive but not schedule sensitive and not subject to change 	 Best suited for complex projects that are schedule sensitive, require complicated phasing and high level of oversight and difficult to define

Project Delivery Methods

Essex Public Safety Facility

CM at Risk Advantages:

- Ability to select contractor based on qualifications
- Ability to release early packages under same contractor to accelerate schedule and time to market
- Contractor involved early in the design process prior to bid release to provide preconstruction services such as constructability reviews, phasing analysis, cost estimates, and value engineering
- Trade contractors know the contractor prior to submitting bids

CM at Risk Disadvantages:

- Approval required by the Office of the Inspector General
- Less competition from non-trade subcontractors
- Cost of CM services including pre-construction (adds 2-3% to initial cost)
- GMP may not be executed until after construction begins thus reducing options if pricing comes in over budget

N V 5

Project Delivery Methods

Essex Public Safety Facility

NV5

Considerations for the Essex Public Safety Project:

- Overall duration of design schedule would not allow for early CM input or opportunities for early bid packages, reducing benefits to cost premium
- New Construction minimizes the frequency of changes and claims
- The Project will be completed in a single phase on an unoccupied site
- Additional cost for Pre-Construction Phase would be incurred prior to total project funding approval
- Design-Bid-Build more typical in projects of this scale ample pool of qualified bidders